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This document defines the various terms relevant to the hydraulic calculations performed by the 

Drainage Analysis module of 12d Model, including how and where they are calculated. 

 

The terms pipe and channel are sometimes used interchangeably, as are the terms pit, manhole, inlet 

and structure.
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Definitions: 
 

Qrat = Peak Flow  
The peak flow rate for the pipe, without consideration of bypass flows. It is determined from the 

contributing catchments via the Rational Method (and includes any direct pit or pipe flow that may 

have been specified upstream). It is shown in the Hydraulic Report as "Peak Flow Qrat", and is also 

set as a pipe attribute named "calculated peak flow". 

 

Qb = Net Bypass Flow 
When considering bypass flows, Qb for the pipe is determined from an analysis of all the upstream 

pits contributing to the pipe, as recommended in the Australian Rainfall and Runoff. It represents 

the sum of the peak bypass flows approaching these pits, minus the sum of the peak bypass flows 

leaving them. It is shown in the Hydraulic Report as "Net Bypass Flow Qb", and is also set as a pipe 

attribute named "calculated net bypass flow". Note: the peak bypass flow leaving each pit, is 

determined from the pit inlet capacity data, defined for each pit type in the drainage.4d setup file, as 

well as the relevant choke factor determined for each pit. 

 

Q = Pipe Flow = Qrat + Qb 
The peak flow rate in the pipe, represented by the sum of Qrat and Qb. It is shown in the Hydraulic 

Report as "Pipe Flow Q", and is also set as a pipe attribute named "pipe flow". Note: it is only when 

considering bypass flows, that Q may differ from Qrat. 

 

Qx = Excess Pipe Flow 
If the pipe flow, Q, is so large that the HGL would rise above the upstream pit’s grate level, then Qx 

will represent the difference between Q and the flow rate that would keep the HGL just at the grate 

level. It is shown in the Hydraulic Report as "Excess Pipe Flow Qx", and is also set as a pipe 

attribute named "calculated excess flow". Note: the excess flow amount, Qx, is still included in the 

pipe flow, Q, and is not automatically re-routed to the overland system. However, when considering 

bypass flows, the user may set the Qx routing increment to a value greater than zero, which will 

initiate extra analysis passes to re-route just enough flow as is necessary, from the pipe network to 

the overland system, so as to eradicate the excess pipe flows. At each extra pass, an amount no 

greater than the Qx routing increment is removed from the pipe network – from the most upstream 

pipe(s) with excess flow(s) – and re-routed to the overland system. If flow is entering from the top 

of a pipe’s upstream pit, the re-routing is achieved initially by reducing the pit’s choke factor by an 

amount calculated to have the same effect. Once the choke factor is reduced to zero, however, any 

remaining Qx is re-routed as pit surcharge flow, Qs.  

 

Qs = Pit Surcharge Flow 
When (and only when) excess pipe flows are re-routed to the overland system, it is possible for 

some pits to surcharge (flow rising up and exiting the top of the pit). At such pits, the choke factor 

will have been reduced to zero, and Qs will have a positive value equal in magnitude to the negative 

pit inflow. In the Hydrology Report, a negative value of "Inlet Flow Qi" indicates a surcharge flow, 

and Qs is also set as a pit attribute named "calculated surcharge flow". Note: pit surcharge flow is 

automatically included in the bypass flow leaving a pit, and may re-enter the pipe network 

elsewhere. 
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Definitions:  cont … 
 

Vf = Full Pipe Velocity = Q / Af 
The velocity in the pipe when the pipe flow, Q, fills the entire cross-sectional area, Af, of the pipe. 

This is the minimum velocity possible for this flow rate. It is shown in the Hydraulic Report as 

"Full Pipe Vel Vf=Q/Af", and is also set as a pipe attribute named "full pipe velocity". Note: Vf is 

the velocity used to determine pressure head and water surface elevation losses through the 

upstream pit. Typically, the loss coefficients Ku & Kw only apply to pipes under pressure.  

 

Qcap = Capacity Flow  
For the particular size, grade and roughness of the pipe, and assuming no downstream tailwater 

restrictions, the capacity flow is the flow rate theoretically possible in the pipe, at the point where 

the flow would become pressurised (i.e. flowing exactly full). It is shown in the Hydraulic Report as 

"Capacity Flow Qcap", and is also set as a pipe attribute named "flow capacity".  

 

Vcap = Capacity Velocity = Qcap / Af 

The velocity corresponding to Qcap. It is shown in the Hydraulic Report as "Capacity Vel 

Vcap=Qcap/Af", and is also set as a pipe attribute named "capacity velocity". Note: Vcap is 

sometimes referred to by others as at grade velocity, or more confusingly, as full pipe velocity. 

Great care should be taken, to avoid confusing Vcap with Vf. 

 

Capacity Ratio = Q / Qcap  
This is simply the ratio of the pipe flow to the capacity flow. If greater than 1.0, Q will always be 

pressurised. If less than 1.0, Q may or may not be pressurised, depending on the conditions 

downstream. Some governing authorities specify that it should always be less than 1.0. It is shown 

in the Hydraulic Report as "Q/Qcap Ratio", and is also set as a pipe attribute named "flow capacity 

ratio".  

 

Qmcap = Max Capacity Flow  
Similar to Qcap, but representing the maximum unpressurised flow rate theoretically possible in the 

pipe. For a circular pipe, Qmcap occurs at a depth of about 0.94xD. For a box-culvert, Qmcap occurs at 

a depth just below the obvert (0.999xH, say). For circular pipes, Qmcap is approximately 1.07xQcap. 

For box-culverts, Qmcap may be considerably greater than Qcap, due to the sudden increase in friction 

losses when the flow comes into contact with the top wall – an effect more pronounced as the 

culvert's width/height ratio increases. Note: Qmcap is not calculated by 12d Model, as it is an 

inherently unstable flow, which can become pressurised with only the slightest increase in frictional 

resistance. Pipe manufacturers typically publish capacities which match more closely to Qcap.  

 

Vmcap = Max Capacity Velocity 
The velocity corresponding to Qmcap, that is: Vmcap = Qmcap / Aw , where Aw is the wetted cross-

sectional area at the depth at which Qmcap occurs. 
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Definitions:  cont … 
 

dn = Normal Depth  
The depth in the pipe when the slope of the water surface of the pipe flow, Q, is parallel to the pipe 

slope. If Q is greater than Qcap, dn is set to the obvert of the pipe. It is set as a pipe attribute named 

"normal depth", and the value [dn / <pipe height>] is set as "normal depth relative".  

 

dc = Critical Depth  
The depth in the pipe when the local energy head (the sum of the pressure and velocity heads only, 

ignoring the gravity head) of the pipe flow, Q, is at a minimum. It is set as a pipe attribute named 

"critical depth", and the value [dc / <pipe height>] is set as "critical depth relative".  

 

Vn = Normal Depth Velocity  
The velocity in the pipe when the pipe flow, Q, is flowing at the normal depth, dn. This is the 

maximum velocity possible for this flow rate, in the most common case of a "steep" slope pipe 

(where dc > dn). In the rare case of a "mild" slope pipe (where dc < dn), it is possible for the velocity 

to be slightly greater near the downstream end of the pipe, if the flow "drops off the end" and the 

depth approaches dc. It is shown in the Hydraulic Report as "Norm Depth Vel Vn=Q/An", and is 

also set as a pipe attribute named "normal velocity". 

 

Vc = Critical Depth Velocity  
The velocity in the pipe when the pipe flow, Q, is flowing at the critical depth, dc. When the flow is 

slower than Vc (deeper than dc) it is termed tranquil flow. When the flow is faster than Vc (shallower 

than dc), it is termed rapid flow. It is shown in the Hydraulic Report as "Crit Depth Vel Vc=Q/Ac", 

and is also set as a pipe attribute named "critical velocity".  

 

Vmin & Vmax = Allowable Velocity Ranges for Vn and Vcap  
These velocity limits are often specified by governing authorities, to ensure that all pipe flows are 

fast enough to wash away impediments, but not so fast as to scour the pipes. If set on the 

GLOBAL=>Main tab of the Drainage Network Editor, they are checked against the calculated Vn 

and/or Vcap values. If ever a calculated velocity is too low or too high, a new pipe grade is 

recommended in the Output Window, to help remedy the problem. 

 

Va = Actual Velocity (VicRoads manual)  
The Victorian "VicRoads" manual refers to a chart for determining the so-called actual velocity, Va, 

in part-full pipes. The chart shows a relationship between Q / Qcap values and Va / Vcap values. The 

resultant Va values from this chart, are equivalent to the normal depth velocity, Vn, values calculated 

by 12d Model.  
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Manning's Formula versus the Colebrook-White Formula: 

 

The Drainage Analysis module allows pipe roughness to be specified as either Manning's n (based 

on metre-second units), or Colebrook's k (specified in mm in 12d). The choice of roughness type 

determines the formula – Manning or Colebrook-White – used to calculate: Qcap, Vcap, dn and Vn. It 

also governs how the friction slope is determined in both the Darcy-Weisbach equation and the 

Gradually Varied Flow equation, when calculating the HGL values along the pipe. The Colebrook-

White formula may be seen as an empirical combination of the Rough and Smooth Pipe Laws of 

turbulent flow, which were both derived from boundary-layer theory by Prandtl and von Kármán, 

but adjusted to match the experimental results of Nikuradse, who performed a series of lab tests on 

small pipes of uniform roughness. Colebrook and White, however, performed tests on a range of 

commercial pipes (of non-uniform roughness) – with an equivalent k deduced from the constant 

friction factor, f, observed at high Reynolds number – and found that for most of the pipes they 

tested, their new combination-formula matched well. The turbulent range of the now widely-used 

Moody Diagram, is wholly based on the Colebrook-White formula, and represents the trend to be 

expected, in the absence of any specific data for particular pipes. Where non-circular pipes are used, 

or where part-full flow occurs in any kind of pipe or open channel of reasonably uniform cross-

section, substitution of 4R for D (four times the hydraulic radius for diameter) can be justified, with 

the assumption that the mean shear-stress around the wetted perimeter is not too dissimilar from the 

uniform stress around a circular perimeter (true enough for box-culverts and many open channels). 

Because the Colebrook-White formula accounts for the variations in f dependent on the relative 

roughness (k/R or k/D) and the Reynolds number (Re), it is slightly more reliable, when considered 

across the range of pipe sizes and flow rates commonly found in stormwater systems. Most of the 

values published for Manning’s n are for relatively large open channels, where the dependency on 

Re is slight, and relative roughness is implied in the n value. As such, Manning’s formula is good 

for larger systems (especially natural channels), but when applied to smaller systems like typical 

stormwater pipes, the Colebrook-White formula suggests that these published n values should be 

reduced somewhat. Overall, the primary difficulty with both formulae lies in the selection of 

suitable n or k values, and significant errors are not uncommon. The following figure shows a 

normalised graph of Manning's formula, for a full range of flow depths in both circular pipes and 

(square) box-culverts. (The corresponding Colebrook-White graph is so similar on this normalised 

scale, that it may be considered identical.) Note the difference between Qcap and Qmcap on the graph. 
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The Hydraulic Grade Line (HGL): 
 

In 12d Model, when a Drainage string is profiled or plotted, you have the option to display the HGL 

determined from a storm analysis of the drainage network. The HGL represents the peak sum of the 

pressure and gravity heads throughout the network, and in 12d, it is idealised to show separate head 

losses along the pipes and through the pits. In reality, these losses are not separate, but continuous, 

with the often highly un-developed flow near the pits, progressively forming fully-developed, one-

dimensional flow, in the pipe reaches sufficiently distant from the pits. 

HGL Along Pipes: The HGL drawn along a pipe in 12d, is simply the straight line joining the 

pipe’s idealised entrance and exit HGL levels. As such, in pipes where the steady flow is wholly 

pressurised, it is a good representation of the friction slope, and consequent loss of total head (∆HT) 

due to friction. However, where part-full flow occurs in any portion of the pipe, neither the friction 

slope nor the water surface slope is constant, and so the straight line implies nothing other than the 

idealised entrance and exit HGL levels. For these cases, the idealised HGL is calculated internally, 

assuming fully-developed flow, via numerical integration of the Gradually Varied Flow equation. 

This handles all possible cases of tranquil and rapid flow on mild and steep slope pipes, including 

the hydraulic jumps that can occur on steep slopes. Note that, due to the non-uniform velocity head 

in these cases, ∆HT due to friction cannot be determined from the idealised HGL, and must instead 

be determined from the Total Energy Line (TEL). 

HGL At Pits: The horizontal HGL drawn across a pit, represents the peak water surface elevation 

(WSE) in that pit, and is tested against the freeboard and surcharge limits imposed there. The jump 

in the HGL between a pit’s entrance and exit, represents the change (normally a loss) in pressure 

head (∆HP) through that pit (it does not represent the loss in total head). If a pit’s entrance HGL 

level is higher than the level formed by the minimum of dn and dc in an upstream pipe, then this 

HGL level also forms a tailwater condition for that upstream pipe. Note that ∆WSE is typically 

equal to, or slightly greater than ∆HP, and that both these jumps may, to a certain extent, be thought 

of as the effect that a pit has on what would otherwise be fully-developed, one-dimensional flow. 

 

Schematic of a typical HGL in a steep slope pipe 
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Hydraulic Equations: 

 
Bernoulli’s Equation (for the head of a streamline) 
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Reynolds Number (laminar flow < 2000 < critical zone < 4000 < turbulent flow) 
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Darcy-Weisbach Equation (for steady, uniform [pressurised] flow) 
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Gradually Varied Flow Equation (for steady, non-uniform [free-surface] flow) 
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Manning's Formula (for complete turbulence, high Re) 
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Colebrook-White Formula (for transition zone flow and complete turbulence, Re > 4000) 
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Pressure Head Change Formula (through pit directly upstream of pipe) 
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WSE Change Formula (between pit directly upstream of pipe and pipe entrance) 
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where: [dimensions] 
   

HT = total head (energy per unit weight of water) [L] 

HV = velocity head = V 
2 

/ 2g [L] 

HP = pressure head = h [L] 

HG = gravity head = z [L] 

V = mean velocity of flow through a cross-section [L/T] 

g = acceleration due to gravity [L/T
2
] 

h = pressure head (and depth of flow in an open channel) at a cross-section [L] 

z = height of channel invert at a cross-section, from a constant horizontal datum [L] 

Re = Reynolds number [-] 

ν = kinematic viscosity of water [L
2
/T] 

D = diameter of circular pipe [L] 

R = hydraulic radius of flow at a cross-section = Aw /Pw = D/4 for full circular pipe [L] 

Aw = wetted cross-sectional area [L
2
] 

Pw = wetted cross-sectional perimeter [L] 

L = plan length of channel [L] 

f = Darcy friction factor (based on D) [-] 

m = Fanning friction factor (based on R) = f /4 … confusingly, often denoted by f [-] 

dh/dL = longitudinal slope of water surface at a cross-section, relative to S0 [-] 

B = lateral breadth of water surface at a cross-section [L] 

S0 = channel slope [-] 

Sf = friction slope (energy lost, per unit weight of water, per unit length of channel) [-] 

S = context dependent – typically: S0 when solving for V;  Sf when solving for S [-] 

n = Manning roughness factor [T/L
1/3

] 

k = Colebrook roughness factor [L] 

WSE = water surface elevation in pit [L] 

Ku = pressure head change factor for pit directly upstream of pipe [-] 

Kw = WSE change factor for pit directly upstream of pipe [-] 

Vf = full pipe velocity [L/T] 
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Determining the Critical and Normal Depths in Part-full Pipes: 
 

Wherever the pipe flow, Q, is less than the capacity flow, Qcap, the potential exists for part-full (free 

surface) flow to occur. In these instances, the critical and normal flow depths are determined by 12d 

Model, using the equations shown in the figure below. Note that the graph within the figure, shows 

the solutions for a circular pipe on a normalised scale. 
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More Hydraulic Equations (for reference only – not used in 12d): 
 

Chézy’s Formula (for complete turbulence, high Re) 
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Laminar Flow Law (for Re < 2000) 
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Smooth Pipe Law (for Re > 4000, very low k/D) 
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Rough Pipe Law (for complete turbulence, high Re) 
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Converting k to n (by equating Manning’s formula to the Colebrook-White formula) 
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